skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aragón‐Moreno, Alejandro_Antonio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A 5.25‐m sediment core SRM‐1 and 45 surface samples from mangrove forests at the Shark River Estuary in the Everglades National Park, Florida, were examined by using X‐ray fluorescence and carbon isotopic analyses to study the history of intense hurricane landfall during the Late‐Holocene. Significance testing of the surface samples in relation to storm deposits from Hurricane Wilma suggests that elemental concentration of Sr and Cl and the ratio of Cl/Br are the most sensitive indicators for major hurricane events in our study area. The geochemical data sets of core SRM‐1 identified five active periods of intense hurricane activities during the last 3,500 years at ~3,400–3,000, ~2,200–1,500, ~1,000–800, ~600–300, and ~150 calibrated years before present to present. This is the longest paleohurricane record to date from South Florida. Our results are consistent with the view that intense hurricane activities in South Florida were modulated by Intertropical Convergence Zone (ITCZ) movements, El Niño/Southern Oscillation (ENSO) activities, and North Atlantic Oscillation (NAO) strength. This study contributes to the methodological advancement in paleotempestological studies by demonstrating that geochemical signals, particularly signals of saltwater intrusions, can be preserved in the sediment profiles on millennial time‐scale and measured by X‐ray fluorescence techniques, thereby enabling more storm records to be produced from otherwise suboptimal sand‐limited coastal systems such as the Florida Everglades. More work needs to be done to explore the use of geochemical and stable isotopic analyses in detecting storm signals from sand‐limited coastal environments. 
    more » « less